Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures
نویسندگان
چکیده
منابع مشابه
Lifted Relational Neural Networks
We propose a method combining relational-logic representations with deep neural network learning. Domain-specific knowledge is described through relational rules which may be handcrafted or learned. The relational rule-set serves as a template for unfolding possibly deep neural networks whose structures also reflect the structure of given training or testing examples. Different networks corresp...
متن کاملStacked Structure Learning for Lifted Relational Neural Networks
Lifted Relational Neural Networks (LRNNs) describe relational domains using weighted firstorder rules which act as templates for constructing feed-forward neural networks. While previous work has shown that using LRNNs can lead to state-of-the-art results in various ILP tasks, these results depended on hand-crafted rules. In this paper, we extend the framework of LRNNs with structure learning, ...
متن کاملLearning Predictive Categories Using Lifted Relational Neural Networks
Lifted relational neural networks (LRNNs) are a flexible neuralsymbolic framework based on the idea of lifted modelling. In this paper we show how LRNNs can be easily used to declaratively specify and solve a learning problem in which latent categories of entities and properties need to be jointly induced.
متن کاملLifted Parameter Learning in Relational Models
Lifted inference approaches have rendered large, previously intractable probabilistic inference problems quickly solvable by employing symmetries to handle whole sets of indistinguishable random variables. Still, in many if not most situations training relational models will not benefit from lifting: symmetries within models easily break since variables become correlated by virtue of depending ...
متن کاملLifted Relational Kalman Filtering
Kalman Filtering is a computational tool with widespread applications in robotics, financial and weather forecasting, environmental engineering and defense. Given observation and state transition models, the Kalman Filter (KF) recursively estimates the state variables of a dynamic system. However, the KF requires a cubic time matrix inversion operation at every timestep which prevents its appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2018
ISSN: 1076-9757
DOI: 10.1613/jair.1.11203